Smooth solvation method for d-orbital semiempirical calculations of biological reactions. 1. Implementation.

نویسندگان

  • Jana Khandogin
  • Brent A Gregersen
  • Walter Thiel
  • Darrin M York
چکیده

The present paper describes the extension of a recently developed smooth conductor-like screening model for solvation to a d-orbital semiempirical framework (MNDO/d-SCOSMO) with analytic gradients that can be used for geometry optimizations, transition state searches, and molecular dynamics simulations. The methodology is tested on the potential energy surfaces for separating ions and the dissociative phosphoryl transfer mechanism of methyl phosphate. The convergence behavior of the smooth COSMO method with respect to discretization level is examined and the numerical stability of the energy and gradient are compared to that from conventional COSMO calculations. The present method is further tested in applications to energy minimum and transition state geometry optimizations of neutral and charged metaphosphates, phosphates, and phosphoranes that are models for stationary points in transphosphorylation reaction pathways of enzymes and ribozymes. The results indicate that the smooth COSMO method greatly enhances the stability of quantum mechanical geometry optimization and transition state search calculations that would routinely fail with conventional solvation methods. The present MNDO/d-SCOSMO method has considerable computational advantages over hybrid quantum mechanical/molecular mechanical methods with explicit solvation, and represents a potentially useful tool in the arsenal of multi-scale quantum models used to study biochemical reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth solvation method for d-orbital semiempirical calculations of biological reactions. 2. Application to transphosphorylation thio effects in solution.

Density-functional and semiempirical quantum methods and continuum dielectric and explicit solvation models are applied to study the role of solvation on the stabilization of native and thio-substituted transphosphorylation reactions. Extensive comparison is made between results obtained from the different methods. For the semiempirical methods, explicit solvation was treated using a hybrid qua...

متن کامل

Parameterization and efficient implementation of a solvent model for linear-scaling semiempirical quantum mechanical calculations of biological macromolecules

A method is developed to include solvation effects in linear-scaling semiempirical quantum calculations. Favorable scaling of computational effort for large molecules is achieved using a preconditioned conjugate gradient technique in conjunction with a linear-scaling recursive bisection method for evaluation of electrostatic interactions. The method requires approximately 30% computational over...

متن کامل

Molecular Orbital Calculations on the PÐS Bond Cleavage Step in the Hydroperoxidolysis of Nerve Agent VX

The P—S bond cleavage process in the hydroperoxidolysis of a model system for the nerve agent VX was studied using ab initio and semiempirical molecular orbital methods. Aqueous solvation effects were included through single-point calculations using the semiempirical SM5.2PD/A continuum solvation model and geometries optimized at the HF/MIDI! level of theory. The predominant pathway for P—S bon...

متن کامل

Hybrid QM/MM study of thio effects in transphosphorylation reactions: the role of solvation.

Transphosphorylation thio effects in solution are studied using hybrid QM/MM calculations with a d-orbital semiempirical Hamiltonian. Activated dynamics simulations were performed for a 3' ribose-phosphate model in an explicit 20 A sphere of TIP3P water surrounded by a solvent boundary potential, and free energy analysis was performed using the weighted histogram analysis method. Single thio-su...

متن کامل

Improvement of semiempirical response properties with charge-dependent response density.

The present work outlines a new method for treatment of charge-dependent polarizability in semiempirical quantum models for use in combined quantum-mechanical/molecular mechanical simulations of biological reactions. The method addresses a major shortcoming in the performance of conventional semiempirical models for these simulations that is tied to the use of a localized minimal atomic-orbital...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 19  شماره 

صفحات  -

تاریخ انتشار 2005